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Abstract

Person re-identification is a challenge in video-based

surveillance where the goal is to identify the same person

in different camera views. In recent years, many algorithms

have been proposed that approach this problem by design-

ing suitable feature representations for images of persons or

by training appropriate distance metrics that learn to distin-

guish between images of different persons. Aggregating the

results from multiple algorithms for person re-identification

is a relatively less-explored area of research. In this pa-

per, we formulate an algorithm that maps the ranking pro-

cess in a person re-identification algorithm to a problem

in graph theory. We then extend this formulation to al-

low for the use of results from multiple algorithms to make

a consensus-based decision for the person re-identification

problem. The algorithm is unsupervised and takes into ac-

count only the matching scores generated by multiple al-

gorithms for creating a consensus of results. Further, we

show how the graph theoretic problem can be solved by

a two-step process. First, we obtain a rough estimate of

the solution using a greedy algorithm. Then, we extend the

construction of the proposed graph so that the problem can

be efficiently solved by means of Ant Colony Optimization,

a heuristic path-searching algorithm for complex graphs.

While we present the algorithm in the context of person re-

identification, it can potentially be applied to the general

problem of ranking items based on a consensus of multiple

sets of scores or metric values.

1. Introduction

The application of computer vision in video-based

surveillance and forensics has gained much popularity in

recent years [31]. Among different challenges within that

context, person re-identification has been particularly chal-

lenging to solve due to a number of reasons – changes in

appearance of a person due to change in viewpoint, pose, il-

lumination, and occlusion. Moreover, the visual appearance

of different persons often appear to be similar due to similar

clothing or prevalence of common clothing styles.

The problem of person re-identification can be formally

stated as – given a gallery of images of a number of per-

sons, a probe image of a person from another viewpoint

is to be matched with the corresponding gallery image of

the same person. Person re-identification algorithms pro-

posed till date have focused on learning the appearance

of different persons [14, 24] and distance metric learn-

ing [21, 27]. While designing discriminative features that

are able to distinguish between the appearances of differ-

ent persons [14, 24] is a common feature representation ap-

proach, progress has also been made towards extraction of

features through the application of deep learning [1, 19].

Performance of person re-identification algorithms has

improved steadily over the years. However, the accuracy

rates for person re-identification systems are not adequate

for implementation in automated video surveillance in the

real world. A simple yet effective way to boost the perfor-

mance of person re-identification systems is to explore the

possibility of enhancing the performance of existing algo-

rithms by combining results from multiple algorithms. The

utility of this direction of research cannot be overempha-

sized since the advent of new algorithms will only serve to

further enhance the results by feeding results from existing

and future algorithms into these aggregating techniques[2].

In this paper, we show how the process of ranking gallery

images, in terms of their similarity scores with a probe im-

age, can be mapped to a path searching problem in a graph.

This mapping is then extended to include the scenario when

there are multiple sets of scores from different algorithms

instead of a single set of scores from just one algorithm.

This mapping allows us to make decisions on a person re-

identification problem based on a consensus of results from

multiple algorithms. Finally, we propose a two-step method

for solving the formulated graph problem. The overall ap-

proach of mapping the ranking process to a graph, and its

proposed two-step solution is denoted as SHaPE (Shortest
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Hamiltonian Path Estimation). In defining the solution, we

make use of a heuristic path-searching algorithm for com-

plex graphs – Ant Colony Optimization (ACO) [11].

The contributions of the paper are summed up as follows:

• We show a novel mapping scheme that maps the pro-

cess of ranking using scores to a path-searching prob-

lem in a graph.

• We extend the mapping scheme to incorporate the use

of multiple sets of scores from different algorithms.

This results in a problem of consensus-based decision

making.

• We propose a two-step method for solving the problem

of consensus-based decision making using graph the-

ory. First, a rough estimate is obtained using a greedy

algorithm and then the result of the consensus is ob-

tained using Ant Colony Optimization.

We present the results of experiments performed on

three of the most commonly used datasets for per-

son re-identification – VIPeR [15], CUHK01 [18] and

CUHK03 [19]. The results indicate that the performance

of our consensus-based decision-making algorithm results

in a significant improvement in performance over individ-

ual algorithms. Moreover, our algorithm outperforms other

state-of-the-art score fusion techniques used in the context

of person re-identification.

2. Related Work

The task of person re-identification begins with feature

representation [35, 39]. The goal of the feature representa-

tion process is to extract suitable features from the images

of different persons in such a manner that the images of the

same person have similar features while those of different

persons are dissimilar. The process of feature extraction

has evolved considerably over the years. The earliest works

involve the use of color and texture descriptors include En-

semble of Localized Features (ELF) [15], shape and appear-

ance context modeling [32], and Symmetry Driven Accu-

mulation of Local Features (SDALF) [14]. In more recent

years, feature extraction has been done by exploiting prop-

erties such as visual saliency [36], custom pictorial struc-

tures [6] and the use of regionlets [33]. The use of tech-

niques such as Fisher vector encoding [23], local maxi-

mal occurrence representation (LOMO) [21], hierarchical

Gaussian descriptors [24], and deep learning [1, 19, 29]

have improved the performance of person re-identification

markedly in recent years.

Learning a suitable distance metric from the features of

annotated images of persons has been an important direc-

tion of research. These distance functions are designed and

learned in such a way that the images of the same per-

son are “closer” while the images of different persons are

“farther apart”. Some of the approaches that yield interest-

ing results include the use of Mahalanobis distance [16],

RankSVM [28], probabilistic relative distance compari-

son [38], locally-adaptive decision functions [20], and

Cross-view Quadratic Discriminant Analysis (XQDA) [21].

A relatively new direction of research involves the use

of existing algorithms to enhance performance [2, 3]. In

this context, research has been done to evaluate the im-

provement in performance by using co-traveler informa-

tion [34], and exploiting gait features along with existing

features [22]. Using the results from many algorithms to

make a consensus-based decision has also been explored

through the use of rank aggregation [8], fusion of fea-

tures [13, 17], sum of weighted scores [25], and the use of

false alarm rate (FAR) for supervised score fusion [12]. The

estimation of posterior probabilities from raw scores for un-

supervised fusion [2] and Query-Adaptive late fusion [37]

exhibit some of the most promising results in recent years.

3. Mapping the Ranking Process to a Graph

Consider a probe image and a set of n gallery images,

which a person re-identification algorithm scores in order

to establish a degree of similarity. In our formulation, we

assume that the scores are non-negative real numbers. To

identify the best match, the scores need to be sorted so that

the gallery image with the highest score (similarity) can be

established as the best match. This sorting or ranking pro-

cess can be modeled as follows. Beginning from the gallery

image having the lowest similarity score, the ranking pro-

cess moves towards higher scores until it reaches the highest

score. The process of moving towards higher scores, one by

one, can be seen as moving to “the nearest score (or gallery

image) that has not yet been visited”.

The modeling of the ranking process described above

can be mapped to a graph, G = (V,E), where V is the

set of vertices and E is the set of edges or arcs. In this

formulation, we consider the set of vertices to be the set of

gallery images, i.e., each vertex corresponds to a gallery

image. An edge between any two vertices is undirected

and has a weight equal to the absolute difference between

the similarity scores of the two gallery images. Conse-

quently, we construct a fully connected graph. In the graph

G = (V,E), the set of vertices is V = {1, 2, . . . , n} and

the set of edges is E ⊆ V 2. An edge between vertices i
and j is denoted by (i, j) and the weight associated with

(i, j) is denoted as ωij . Since the graph is fully connected,

ωij exists ∀ i, j ∈ V and i 6= j. Also, since the graph is

undirected and there are no self-loops, ωij = ωji for i 6= j
and ωii = 0 ∀ i, j ∈ V . We term this graph as a “Score

Distance Graph”.

The process of ranking can now be translated to finding

a suitable path in the Score Distance Graph. The ranking

starts with the vertex whose corresponding score is closest
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(a)

A C DBImages

Scores_A 6 1.5 4 3

Scores_B 0.8 0.3 0.7 0.5

Scores_C 70 32 47 24

(b)
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Correct starting node
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D BAC

Wrong starting node

(g)

Figure 1: An example of Ranking using a Score Distance Graph for a gallery of 4 images. (a) Probe image, (b) Gallery

set along with respective matching scores using 3 different algorithms, (c) Score Distance Graph using scores from just 1
algorithm, Scores A (Correct ranking path shown in red), (d) Score Distance Graph using scores from all 3 algorithms, (e)

Scores plotted on a number line for Scores A (shortest path connecting all nodes shown in red), (f) Correct ranking, (g)

Wrong starting node selection resulting in wrong ranking (worst match chosen as highest ranked).

to 0, and then at each step, moves to the nearest node that

has not yet been visited. The process continues until ev-

ery node has been visited and there are no more nodes left

to traverse. The path that has been traversed gives us the

ranking of the gallery images based on the similarity scores

from lowest to highest. As illustrated through Figure 1, let

us assume that a probe image (Figure 1a) is matched against

a gallery of 4 images with similarity scores obtained from

3 person re-identification algorithms as shown in Figure 1b.

The corresponding Score Distance Graph for only the first

algorithm is constructed (Figure 1c) and the starting node is

determined to be the node closest to 0 i.e. node B. Figure 1e

shows the scores on a number line and B is seen to be the

node closest to 0. The shortest path connecting all 4 nodes

is shown in red. The correct ranking order is shown in Fig-

ure 1f. In fact, this is the path with the smallest sum of edge

weights that traverses all the nodes in the Score Distance

Graph. Hence, finding this path in the graph would result in

ranking the gallery. An incorrectly ranked list formed due to

the wrong selection of starting node is shown in Figure 1g.

The path in the graph discussed above traverses all ver-

tices exactly once. Such a path in a graph is known as a

Hamiltonian path [9]. A Hamiltonian path in a graph of n
vertices can be written as an (n− 1)-tuple of edge weights,

PH =
(

ωi1i2 ,ωi2i3 , . . . ,ωin−1,in

)

(1)

where i1, i2, . . . , in ∈ E are distinct, and ωikik+1
is the

weight associated with the edge (ik, ik+1) ∈ V . In fact,

(i1, i2, . . . , in) is a permutation of the n vertices in V . The

ranking order is given by the nodes on the path written out

in reverse order, i.e., (in, in−1, in−2, . . . , i2, i1).

For the particular case of the process of ranking, the

Hamiltonian path found in the graph is actually the shortest

Hamiltonian path that starts from the chosen vertex (or, the

corresponding gallery image) whose similarity score with

respect to the probe is closest to 0. Moreover, it can be seen

from the number line in the example shown in Figure 1e that

it is one of the two globally shortest possible Hamiltonian

paths starting from any node in the graph, the other one hav-

ing an identical total path length and being just the reverse

of this path. The shortest Hamiltonian path among the set

of all possible Hamiltonian paths starting from all nodes in

a graph is termed as the globally shortest Hamiltonian path

in our formulation.

The process of ranking a set of gallery images thus re-

duces to the problem of finding the globally shortest Hamil-

tonian path in a graph thus created using the gallery images

as the vertices. Either of the two globally shortest Hamilto-

nian paths is equivalent and give the ranking order for the

gallery images. For the sake of simplicity, we will assume

that we choose the path that starts from the vertex that has

the lowest similarity score and this path gives the ranking in
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reverse order.

We now extend the process of ranking using one set

of similarity scores to a process of consensus-based deci-

sion making using multiple sets of scores. In this case,

each vertex still corresponds to a gallery image. How-

ever, each gallery image is associated with not just one

score but a vector of multiple scores. Each of the simi-

larity scores in the vector is obtained by using a different

person re-identification algorithm that computes the simi-

larity between the probe image and that gallery image. If a

consensus-based decision is to be made from the scores of

K algorithms, then the score vector has a dimension of K.

We denote this score vector as an “attribute” of the node.

It is also necessary to suitably define the weights associ-

ated with each edge for the Score Distance Graph. An edge

weight should be a representative of the “distance” between

the score vectors of the two corresponding nodes that it

connects. Extending the simple absolute difference method

used for scalar scores to Manhattan distance for vectors of

scores is not practical since each of the algorithms yields a

set of scores with differing ranges and distributions. It is of

paramount importance to consider the distribution of scores

from each algorithm while calculating the weight of each

edge. In order to account for the distributions and variances

of the different sets of scores obtained from different algo-

rithms, Mahalanobis distance between the score vectors of

respective nodes is used for computing the weight of the

edges between any two nodes. For the example shown in

Figure 1, the Score Distance Graph constructed using the

scores for all 3 algorithms is shown in Figure 1d.

Having constructed the Score Distance Graph, the rank-

ing of gallery images based on the consensus of scores from

multiple algorithms can now be found by determining the

globally shortest Hamiltonian path in the graph.

4. Shortest Hamiltonian Path Estimation

In this section, we present a two-step solution for esti-

mating the shortest Hamiltonian path in the Score Distance

Graph for the purpose of consensus-based decision making.

Finding the globally shortest Hamiltonian path in a graph

is an optimization problem of finding the path of smallest

length that passes through all the nodes in a graph. We pro-

pose to solve this optimization problem using Ant Colony

Optimization (ACO), a heuristic path-searching algorithm

for complex graphs. Some parameters of ACO are depen-

dent on the scale of the problem and need to be initialized

suitably. Therefore, the first step is a greedy method which

tries to determine the length of the shortest Hamiltonian

path in the graph based on the process of ranking for a sin-

gle set of scores. We then apply Ant Colony Optimization

to complete the estimation process.

The simplicity of the ranking process in a single set of

scores cannot be simply extended to account for the case

of multiple sets of scores. For a single set of scores, the

scores can be plotted on a number line (see Figure 1e), and

the nodes can be written out in order of their appearance on

the number line. However, for a multi-modal scenario, the

different distributions of scores from different algorithms

are mapped to each dimension, and hence, different non-

linearities are introduced across different dimensions. It is,

thus, not simply the extension of a number line in many

dimensions. For example, the crucial process of selecting

the starting node might be flawed, which might result in an

incorrect ranking (refer to Figure 1g). Hence, estimating

the shortest Hamiltonian path in the Score Distance Graph

becomes a non-trivial problem, unlike the simplistic one-

dimensional scenario.

4.1. Greedy Nearest Node Search (GNNS)

The starting node for the shortest Hamiltonian path is se-

lected by finding the Mahalanobis distance between every

node and a “zero” node with the attribute as a vector of zero

values. Having decided the starting node, the subsequent

nodes in the path are decided greedily. At every step, the

nearest node from the present node is found (based on Ma-

halanobis distance that is used to compute weights for the

edges), and the process continues until all the nodes have

been traversed.

As in the notation presented in Equation 1, the starting

node is denoted as i1. The next node i2 is selected using the

following equation,

wi1i2 = min
k∈V \{i1}

wi1k (2)

where, the set notation A\B ≡ {x ∈ A | x /∈ B}. In a sim-

ilar manner, the subsequent node in the path, i3 is selected

using the following equation,

wi2i3 = min
k∈V \{i1,i2}

wi2k (3)

In general, when the traversal has reached l nodes, the

(l + 1)th node is selected from the graph using the follow-

ing equation,

wilil+1
= min

k∈V \{i1,i2,...,il}
wilk (4)

After traversing all nodes, the path (i1, i2, . . . , in) gives

a rough estimate of the ranking in reverse order. The rank-

ing order generated by the greedy algorithm, is thus, given

by the n-tuple,

R = (in, in−1, in−2, . . . , i2, i1) (5)

The length of the path obtained from this greedy nearest

node search is denoted as Lnn and is used to initialize cer-

tain parameters in the ACO step for solving this problem.
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4.2. Letting Ants Find the Way

As the second step for our two-step solution to the

consensus-based ranking problem, we use Ant Colony Op-

timization [10, 11]. Ant Colony Optimization (ACO) is a

metaheuristic that has been widely applied for solving dis-

crete optimization problems, especially for finding paths in

a complex graph based on a specified set of criteria.

In order to apply ACO for solving the path search prob-

lem in the graph in a heuristic fashion, the Score Distance

Graph that we proposed in Section 4 needs to be slightly

modified. We convert the problem of finding the short-

est Hamiltonian path in the n-node Score Distance Graph

to an equivalent Traveling Salesman Problem (TSP) in an

(n+ 1)-node graph [5]. A “dummy” node is added to the

n-node graph G to obtain an (n+ 1)-node graph, G′. It is

imperative to note here that this “dummy” node is different

from the “zero” node used previously. The zero node is not

used to extend the graph, but just to estimate the starting

node for greedy nearest node search. While the attributes

of the zero node are all zeros, the attributes of the dummy

node are “don’t care”, since we do not really need to con-

sider the attributes of the dummy node for computations.

For this step of the solution, we require the use of the zero

node only once more at the end. The “dummy” node is

connected to every node in G, so that the properties of the

graph G described in Section 2 also hold for the graph G′.

The weight of every edge connecting the dummy node is

0. This ensures that a circuit (a circuit in a graph is a path

that ends at the same node where it begins) can be found

in G′ without affecting the cost of traversing through the

dummy node: the ends of the shortest Hamiltonian path

can be connected to each other through the dummy node

without adding to the length of the path, thereby getting a

solution for the TSP. Solving the TSP for G′ is now equiva-

lent to solving for the shortest Hamiltonian path in G. The

solution of the TSP yields the shortest Hamiltonian circuit

(a circuit that passes through all nodes exactly once). The

starting and ending nodes in the path can be identified by

checking the distance between the two nodes that are con-

nected to the dummy node with the zero node. The one with

the lower Mahalanobis distance gives the starting node, and

the ranking order of the gallery images can be written as the

reverse of the path that was thus found.

4.2.1 How do ants find the shortest path?

It has been observed that ants efficiently find the shortest

path between their nest (source) and a food source (des-

tination) [11]. While traversing paths between the source

and destination, ants deposit chemical factors known as

pheromones. Since ants that follow shorter paths return

to the source (from a round-trip to the destination) faster

than the ones that follow longer paths, the pheromone de-

posited on shorter paths increase much faster compared to

longer paths. Ants that have to make decisions between

competing paths at a future time, choose the path with more

pheromone with a greater probability than the paths with

lesser pheromones. As this process continues, most ants in

the colony converge to the best (shortest) path between the

source and the destination. The ants, thus, work in “par-

allel” and “cooperate through pheromone-mediated indirect

and global communication” [10].

Every edge ei in the graph is assigned a parameter τi
known as artificial pheromone trail or just pheromone trail.

In the beginning, all edges have the same pheromone trail,

c. Let the cost of a path or sequence s be denoted as f(s)
and the search space as S . Each ant builds a solution, start-

ing from an empty sequence, s = 〈〉. At each solution

construction step, an ant extends the current sequence s by

moving to an unvisited node, i.e. it selects an edge from

the unvisited neighborhood of the current node, denoted by

N (s) ⊆ E \s. An ant selects an unvisited node fromN (s)
using “transition probabilities” which are, in turn, depen-

dent on the values of the pheromone trail of the edges ac-

cording to the following equation [4],

p (ei | s) =
[τi]

α · [η (ei)]
β

∑

ej∈N (s)

[τj ]
α · [η (ej)]

β
(6)

where τi is the pheromone trail on the edge ei, and η is a

weighting function that assigns each edge with a “heuristic

value” [11], usually set to be the inverse of the edge weight

(in case of edge weight being zero, the edge weight is re-

placed by a very small value during calculation). The pa-

rameters α and β are set to 1 and 2 respectively, based on

experiments involving real ants [11]. Contrary to what is

observed in real ants, pheromone is not deposited by ants

while moving in the forward direction (for problems other

than TSP, deposition of pheromone in the forward mode of-

ten results in creation of self-reinforcing loops).

On reaching the destination, each ant has created a

complete sequence from source to destination and it now

switches to backward mode. In this mode, they traverse the

path in the reverse direction, depositing pheromone on the

edges that they traversed in their forward path. Pheromone

update is performed in such a way that shorter paths are

deposited with more pheromone than longer paths. More-

over, pheromone evaporation is done in order to discour-

age early sub-optimal convergence. In the backward mode,

pheromone update is performed on edges on the forward

path according to the following equation [4],

τi ← (1− ρ) · τi + ρ ·
∑

{s∈Supd|ei∈s}

ws · F (s) (7)

for i = 1, 2, . . . , n. Here, ρ ∈ (0, 1] is the evapora-

tion rate of pheromone, Supd is the set of solutions that
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are used for the update, and F : S 7→ R
+ is a qual-

ity function, that decides the quality of the path the ant

had taken in the forward direction, and is chosen such that

f(s) < f(s′) =⇒ F (s) ≥ F (s′) ∀ s 6= s′ and s, s′ ∈ S .

This ensures that the quality of a solution with shorter path

length is at least as much as that of a longer path, and pos-

sibly larger. An additional weight, ws ∈ R
+ is used for

scaling the quality function.

The set of solutions used for the update, Supd, consists

of either the solutions generated in the respective iteration

(Siter) or the best solution found since the first iteration (de-

noted by sbs) or both. We use an update rule known as BS-

update (Best-So-far update) [4], where only sbs is used for

updating the pheromone values and Siter is ignored. Hence,

Supd = {sbs}, and the weight, ws, is set to 1.

4.2.2 Ant Colony System

Considering the performance of different variants of ACO,

an improved algorithm known as Ant Colony System

(ACS) [10], with better performance and faster convergence

than the traditional ACO algorithm, is used in our experi-

ments. In this algorithm, an ant chooses the next edge that

maximizes [τi]
α · [η (ei)]

β
with a probability q0 (exploita-

tion), or uses Equation 6 with a probability (1− q0) (ex-

ploration). The parameter q0 decides the relative balance

between exploitation and exploration. This solution con-

struction is termed as pseudo-random proportional. The

pheromone update rule BS-update is followed with a small

modification. Only if an ant constructs a best-so-far path,

it is allowed to update pheromone while other ants do not

update pheromone. The quality function for pheromone up-

date is the inverse of the path length for the best-so-far path.

Additionally, at the end of each solution construction step,

the edge that is added to the sequence under construction

undergoes a pheromone update,

τi = (1− ξ) · τi + ξ · τ0 (8)

where ξ ∈ (0, 1) is a parameter that determines how

much the pheromone trail is decreased, τ0 is a small

positive constant that satisfies the condition c ≤ τ0 ≤
Fmin, Fmin ← min {F (s) | s ∈ S}, and c is the initial

value of the pheromone trail. This pheromone update leads

to a decrease in pheromone values of the traversed edges,

thereby making these edges less desirable to ants that arrive

at that particular node at a later time step in the respective

iteration. As a result, this mechanism encourages the explo-

ration of paths that have been less traversed within an itera-

tion, since traversed edges have reduced pheromone trails.

4.2.3 Parameters

The parameters for ACS have the following values in our

experiments: α = 1, β = 2, q0 = 0.9, ρ = ξ = 0.1,

and τ0 = ((n+ 1) · Lnn)
−1

, where (n+ 1) is the number

of nodes and Lnn is the length of the shortest Hamiltonian

path as estimated by the greedy nearest node search. The

parameter, τ0, is thus dependent on the scale of the problem,

unlike the other parameters [10]. The number of ants used

is 10. Initially, each ant is placed randomly on a node, with

no node having more than one ant.

The entire two-step solution for Shortest Hamiltonian

Path Estimation (SHaPE) is shown in Algorithm 1.

Algorithm 1 SHaPE Algorithm

1: Find Mahalanobis distance between each pair of score

vectors (i.e. gallery images)

2: Construct Score Distance Graph (vertex ≡ gallery im-

age, edge ≡ distance between score vectors)

3: Create a “zero” node with all attributes 0
4: procedure GREEDY NEAREST NODE SEARCH

(GNNS)

5: Select estimated starting node by finding the node

closest to “zero” node

6: while (unvisited nodes are present) do

7: Choose next node on path using Equation 4

8: end while

9: Compute the length of the greedy path, Lnn

10: end procedure

11: procedure ANT COLONY SYSTEM

12: Add a “dummy node” with edges to all nodes

having 0 weight

13: Initialize parameters, α = 1, β = 2, q0 = 0.9,

ρ = ξ = 0.1, and τ0 = ((n+ 1) · Lnn)
−1

14: while (Convergence is not reached) do

15: Allow ants to construct solutions

16: Update pheromone trails

17: end while

18: end procedure

19: Consider the 2 nodes in the TSP solution connected to

“dummy node”: the node nearer to “zero” node is the

starting point for the reverse ranked list

5. Experiments

In order to evaluate the performance of SHaPE algo-

rithm for consensus-based decision-making, experiments

were performed on three benchmark datasets: VIPeR [15],

CUHK01 [18] and CUHK03 [19]. For the purpose of

comparison, we have used Cumulative Matching Char-

acteristics (CMC), which is a plot of the cumulative re-

identification rate for increasing ranks. In our experiments,

we generate a consensus of results obtained from state-of-

the-art person re-identification algorithms – SDALF [14],

SDC knn [36], SDC ocsvm [36], LOMO+XQDA [21], and

GOGFusion+XQDA [24]. Our experiments show that the re-
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Figure 2: Performance of SHaPE in making consensus-based decisions for (a) VIPeR, (b) CUHK01, and (c) CUHK03. The

performance of l-UPPSF [2] for score fusion is also shown here. Intermediate results for GNNS are shown for comparison

with SHaPE.

Method Rank-1 Rank-2 Rank-3 Rank-5 Rank-10 Rank-15 Rank-20

CH [37] 22.86% 30.73% 35.71% 42.72% 53.91% 61.38% 65.98%

CN [30] 21.74% 28.67% 33.96% 41.41% 50.24% 55.87% 60.85%

LBP [26] 5.73% 9.46% 12.09% 15.52% 23.59% 29.26% 34.19%

HOG [7] 5.40% 7.91% 9.73% 12.75% 19.42% 24.38% 28.20%

SDC ocsvm [36] 23.78% 32.82% 38.23% 45.70% 57.48% 65.46% 71.08%

QAF [37] 30.17% 38.61% 43.82% 51.60% 62.44% 69.06% 73.81%

l-UPPSF [2] 30.35% 39.40% 45.13% 53.35% 64.08% 71.23% 76.23%

SHaPE 34.26% 42.97% 48.29% 57.34% 67.86% 75.16% 80.78%

Table 1: Comparison of cumulative person re-identification rates for VIPeR dataset at different ranks using Color Histograms

(CH), Color Names (CN), Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), SDC ocsvm, and their

consensus using Query-adaptive Fusion, l-UPPSF and SHaPE. The figures in bold indicate the best performance for the

respective rank.

Dataset

(Gallery size)

VIPeR

(N = 316)

CUHK01

(N = 486)

CUHK03

(N = 100)

Execution time (in seconds) 63.17 95.29 13.76

Table 2: Computation times for Matlab implementation of

SHaPE on a 1.7GHz Intel Core i3 processor with 8GB RAM

for different datasets and gallery sizes.

sults of person re-identification generated by the consensus

significantly surpass the results of each of the algorithms

used individually.

Further, we compare the performance of SHaPE with

the results of two state-of-the-art score fusion algorithms

– l-UPPSF [2] and Query-Adaptive Fusion (QAF) [37]. It

can be seen from the results that SHaPE achieves a better

performance at combining results from multiple algorithms

compared to these algorithms.

The VIPeR dataset [15] is one of the most commonly

used datasets for analyzing the performance of person re-

identification algorithms. The dataset contains 2 images

each of 632 persons, each from a different camera view.

Change in illumination between two images of the same

person as well as the large change in viewing angle poses

a considerable challenge for re-identification. The dataset

is split into half with images of 316 persons being used for

testing. Experiments were conducted using 10 such splits as

reported in [14]. A consensus of results from SDALF [14],

SDC knn [36], SDC ocsvm [36], LOMO+XQDA [21], and

GOGFusion+XQDA [24] was done, and the results were

compared with l-UPPSF [2]. The CMC curves obtained

from the experiments is shown in Figure 2a. The CMC

curves show that using SHaPE for making consensus-based

decisions results in a much higher accuracy than using state-

of-the-art algorithms individually. Moreover, the perfor-

mance of SHaPE also supersedes the performance of l-

UPPSF, a state-of-the-art score fusion method.

The CUHK01 dataset [18] contains 4 images each of

971 persons, with 2 images of every person taken from

one camera while the other 2 images are taken from an-

other camera view. For CUHK01 dataset, we tested the

performance of the SHaPE algorithm in combining the re-

sults of SDALF [14], SDC knn [36], SDC ocsvm [36],

LOMO+XQDA [21], and GOGFusion+XQDA [24], using

a multi-shot setting with M = 2, as reported in [21]

and [24]. In other words, both the images of 486 persons

(the rest of the images are used for training by the super-

vised algorithms – SDC knn, SDC ocsvm, LOMO+XQDA,
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Figure 3: A person re-identification example showing top 3

matches for a sample probe image from CUHK01 dataset.

Correct matches are shown in a green bounding box.

and GOGFusion+XQDA) from the second camera view were

used for constructing the gallery set. Experiments were per-

formed on 10 such splits in the dataset, in the same way as

the experiments for the VIPeR dataset. The CMC curves

for all the individual algorithms and their consensus using

SHaPE is shown in Figure 2b. Further, the performance of

l-UPPSF [2] in combining the results of the individual algo-

rithms is also shown. The CMC curves show a significant

improvement in performance not only over the individual

algorithms, but also over l-UPPSF.

The CUHK03 dataset [19] comprises two sets of anno-

tations for images of persons. One set has been obtained

by manually drawing bounding boxes around the images

of persons, while the other set has been automatically de-

tected using a pedestrian detector algorithm. Since the au-

tomatically detected bounding boxes provide a more real-

istic approach to the problem of person re-identification in

real life, our experiments have been conducted using this

set of images. Using this set of images inherently intro-

duces challenges that are not encountered in most other

datasets – presence of background clutter, misalignments,

missing body parts, and the presence of other persons in

a bounding box. The images of 1360 persons were cap-

tured from two camera views for a total of 13, 164 images.

Each person has an average of 4.8 images in the dataset.

Using the same experimental setup in [24], the gallery

set consists of 100 persons, and the experiments are con-

ducted for 20 such gallery sets. The performance of SHaPE

in making consensus-based decisions using SDALF [14],

SDC knn [36], SDC ocsvm [36], LOMO+XQDA [21], and

GOGFusion+XQDA [24] is shown in Figure 2c. The per-

formance of l-UPPSF in combining scores from these al-

gorithms is also shown in the figure. A marked improve-

ment in performance can be observed over the individual

re-identification algorithms and their fusion using l-UPPSF.

That the Greedy Nearest Node Search (GNNS) is inad-

equate in estimating the shortest Hamiltonian path in the

graph can be seen in Figure 2 by comparing the CMC curves

for GNNS and SHaPE. It can be clearly seen that due to

the non-linearities introduced in different dimensions and

a possibly flawed selection of the initial node, the results

from GNNS are far inferior compared to the final results of

the entire SHaPE algorithm (including the ACS solution).

The computation times for a Matlab implementation of

SHaPE run on a computer with 1.7GHz Intel Core i3 pro-

cessor with 8GB RAM are shown in Table 2 for all 3

datasets used in our experiments. An example probe image

with the top 3 matches for re-identification results using 5

individual algorithms and their consensus using SHaPE for

CUHK01 dataset is shown in Figure 3.

Lastly, we compare the performance of SHaPE with

Query-Adaptive Fusion (QAF) [37] using the same experi-

ments in [37]. Query-Adaptive Fusion combines the results

of person re-identification for VIPeR dataset using the fol-

lowing features individually (with a Bag-of-Words model)

– 1. 20-dimensional Color Histograms (CH) using Hue and

Saturation [37]; 2. 11-dimensional Color Names (CN) [30];

3. Local Binary Patterns (LBP) [26]; 4. Histograms of Ori-

ented Gradients (HOG) [7]; and 5. SDC ocsvm [36]. The

performance of SHaPE in obtaining consensus-based deci-

sions using these features is shown in Table 1. Additionally,

the performance of l-UPPSF [2] is also shown in the table.

It can be seen from Table 1 that the performance of SHaPE

is superior to both QAF and l-UPPSF.

6. Conclusion

In this paper, we have shown a novel mapping of the pro-

cess of ranking to a graph based on a set of scores. We then

show how this process in a graph can be extended for mul-

tiple sets of scores in order to make a consensus-based de-

cision. The problem of making consensus-based decisions

using scores from different algorithms has been converted

to a problem in graph theory. We have proposed a two-step

solution of this problem by first employing a greedy near-

est node search to obtain an approximate solution, which is

then used to initialize certain parameters in the next step of

the solution that applies Ant Colony Optimization, a heuris-

tic algorithm for finding paths in graphs based on a specified

set of criteria. Since the process of mapping and solving the

problem of consensus-based decision-making using a graph

can be widely applied to other problems as well, our future

work will involve the application of the proposed SHaPE

algorithm to other problem domains.
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