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Abstract

As a typical large-scale multiobjective optimization problem extracted from real-world applications, the voltage transformer
ratio error estimation (TREE) problem is challenging for existing evolutionary algorithms (EAs). Due to the large number of
decision variables in the problems, existing algorithms cannot solve TREE problems efficiently. Besides, most EAs may fail
to balance the convergence enhancement and diversity maintenance, leading to the trap in local optima even at the early stage
of the evolution. This work proposes an adaptive large-scale multiobjective EA (LSMOEA) to handle the TREE problems
with thousands of decision variables. Generally, multiple efficient offspring generation and environmental selection strategies
selected from some representative LSMOEAs are included. Then an adaptive selection strategy is used to determine which
offspring generation and environmental selection operators are used in each generation of the evolution. Thus, the search
behavior of the proposed algorithm evolves along with the evolution process, the balance between convergence and diversity is
maintained, and the proposed algorithm is expected to solve TREE problems effectively and efficiently. Experimental results
show that the proposed algorithm achieves significant performance improvement due to the adaptive selection of different
operators, providing an effective and efficient approach for large-scale optimization problems.

Keywords Large-scale optimization - Multiobjective optimization - Adaptive operator selection - Voltage transformer ratio
error estimation

1 Introduction

This work was supported by the National Natural Science Foundation Multiobiective ontimization problems (MOPs) involve mul-
of China (Nos. U20A20306, 61903178, and 61906081), the ) P P ( )

Guangdong Basic and Applied Basic Research Foundation (No. U‘ple’ often conflicting, objectives that need to .be optimized
2019A1515110575), the Guangdong Provincial Key Laboratory simultaneously [7]. There are many MOPs in real-world
(Grant No. 2020B121201001), the Program for Guangdong applications, such as flowshop scheduling [26], portfolio
Introducing Innovative and Enterprenel.lrlal Teams (Grant No. optimization [36], and voltage transformers ratio error esti-
2017ZT07X386), and the Shenzhen Science and Technology Program . . . L. L.
(Grant No. KQTD2016112514355531 and mation (TREE) [21]. Unlike single-objective optimization
RCBS20200714114817264). problems, there is a set of trade-off optimal solutions instead
of a single optimum in an MOP. Specifically, these trade-off
optima constitute the Pareto optimal set (PS), and the projec-
tion of the PS in the objective space forms the Pareto optimal
front (PF) [35]. Due to their population-based characteristics
for obtaining multiple solutions in a single run, evolution-
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multiobjective optimization [24]. In recent decades, a vari-
ety of multiobjective EAs (MOEASs) have been proposed,
including the Pareto-based MOEAs (e.g., NSGA-II [12] and
SPEA2 [51]), the indicator-based MOEAs (e.g., IBEA [49]
and SMS-EMOA [3]), and the decomposition-based MOEAs
(e.g., MOEA/D [45] and MOEA/D-M2M [31]). Existing
MOEAs have shown to be effective in solving conventional
MOPs, but their performance drops drastically when the
number of decision variables increases to hundreds or even
more.

MOPs with a large number of decision variables, usu-
ally more than 100, are also known as large-scale MOPs
(LSMOPs) [5,6]. With the linear increment in the num-
ber of decision variables, the search space’s volume and
complexity will increase exponentially. Using a popula-
tion of limited size to search an enormous search space
with an acceptable computational cost is the main chal-
lenge of solving LSMOPs. Recently, with a growing interest
in large-scale multiobjective optimization, four main types
of approaches are proposed to tackle LSMOPs [42]. The
cooperative coevolution (CC) framework based approaches
formed the first type, which handles large-scale decision vari-
ables in a divide-and-conquer manner [37]. Specifically, the
CC method decomposes the decision variables into several
groups and cooperatively optimizes all the groups of decision
variables, e.g., third-generation CC differential evolution
algorithm [1]. The second type of approach reformulates
the original LSMOPs into simpler problems with low-
dimensional decision variables. For instance, the weighted
optimization framework used decision variable grouping
methods and some transforming functions to reduce the num-
ber of decision variables [47]; the large-scale multiobjective
optimization framework (LSMOF) [23] uses problem refor-
mulation to improve the efficiency of MOEAs on LSMOPs.
The third type of approach is dedicated to the decision vari-
able analysis based ones, e.g., MOEA based on decision
variable analysis (MOEA/DVA) [32] and decision vari-
able clustering-based large-scale EA (LMEA) [46]. The last
type of approach tries to enhance the effectiveness of off-
spring generation in conventional MOEAs, i.e., generating
evenly distributed offspring solutions with better conver-
gence than conventional MOEA . Typical algorithms include
the competitive swarm optimizer based EA (LMOCSO) [43],
the direction guided adaptive offspring generation based
EA (DGEA) [20], and the directed sampli ng assisted EA
(LMOEA-DS [38]).

Existing LSMOEAs have shown their advantages in terms
of either efficiency or effectiveness by using different deci-
sion variable handling strategies, leading to their success
in solving some benchmark problems (e.g., ZDT prob-
lems [48], DTLZ problems [13], WFG problems [25], and
LSMOP problems [6]). However, their performance could
be unsatisfactory in solving real-world applications, such as
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TREE [21]. It could be time-consuming and error-prone to
design a specific LSMOEA for solving TREE problems. A
promising and practical way is to use existing LSMOEAs to
design new algorithms. We can use the evolutionary oper-
ators (i.e., offspring generation operator and environmental
selection operator) in existing powerful MOEAs to design
new algorithms for the problems at hand. Many attempts
have been carried out under this line, and several mixed
or hybrid MOEAs which combine different evolutionary
operators have been proposed to solve MOPs and other opti-
mization problems [4,30,44]. One essential and challenging
task in designing a hybrid or mixed EA (i.e., an EA con-
structed by operators from different EAs) is to select suitable
evolutionary operators to be used in the mixed EA. This task
is usually referred to as an operator selection problem in the
evolutionary computation community. The operator selection
problem aims at identifying the most proper operators from
several candidate operators to be used, and thus the algorithm
can perform well on the given problems [9]. Adaptive oper-
ator selection (AOS) is a popular and efficient category of
approaches to address operator selection problem [29]. AOS
approaches solve operator selection problems in an online
fashion, i.e., it dynamically selects suitable operators dur-
ing the problem-solving process or the run of the algorithm,
rather than identifying proper operators before adopting the
algorithm to solve the problem. Due to the adaptive and
dynamic properties of AOS approaches, they are suitable for
handling complex LSMOPs. Motivated by this, we design
an adaptive LSMOEA using adaptive operator selection,
abbreviated to AOS-LSMOEA hereafter, to solve the TREE
problems. Generally, the proposed AOS-LSMOEA approach
can use the crucial components or operators in existing
LSMOEAs and adaptively select suitable ones from them to
use. It can enhance the effectiveness of existing LSMOEAs in
solving TREE problems and be applicable to other black-box
LSMOPs.

In the remainder of this work, we first introduce some
background about the AOS-LSMOEA, including the TREE
problems, the iterated problem reformulation based large-
scale MOEA (iLSMOA), and the AOS, in Sect. 2. The
schema and details of our proposed AOS-LSMOEA approach
are given in Sect. 3, and the experimental studies are provided
in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Background

In this part, we first briefly introduce the formulation of the
involved TREE problems. Next, the offspring generation and
environmental selection operators for large-scale multiobjec-
tive optimization are elaborated. Afterwards, we illustrate
the background of adaptive operator selection. Finally, a
short introduction to the iterated problem reformulation
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based large-scale MOEA (iLSMOA) [19] is given. Notably,
iLSMOA is the basis of the proposed AOS-LSMOEA.

2.1 TREE problems

Unlike existing artificial benchmark problems in the field
of large-scale multiobjective optimization, TREE problems
are extracted from real-world applications with data sampled
from different substations in the power delivery system [21].
Generally, TREE problems transform conventional voltage
transformer (VT) ratio error estimation tasks into large-scale
multiobjective optimization. (1) Physical and statistical rules
are adapted to construct objectives related to the measured
voltage values. (2) The decision variables in TREE problems
are the true voltage values of the power delivery system over
time. Due to irregular data sampled from the power delivery
system, the PS and PF of the TREE problems are irregu-
lar, leading to challenges in diversity maintenance in both
the decision and objective spaces for MOEAs. The detailed
formulations of two types of objectives are given.!

Let us denote the sampled data from the ith VT is d' =
(d{!l, . ..,di"T, ...,d}'“, . ..,dkT), where d;',,q denotes
the measured data from pth phase of the ith VT at time
q. Usually, there are three primary/secondary or six phases
(including three primary and three secondary phases), i.e., K
is three or six. Meanwhile, the ground truth voltage values can
be denoted as x = (x1’1, ey XL Ty e s XK Ts e s xK,T)~
Then the time-varying ratio error of the ith VT e is

(d;.,l—xl,l dy r—x1,1 di | =XK1 d;(,T—XK,T)
R T R R T R R
Without loss of generality, it can be simplified as e¢' =
i i i i :
(‘31,1’ Y W IREREL S R IEREE eKYT). In this case, we can

form the first objective function, where the goal is to min-
imize the total time-varying ratio errors of all the VTs. We
can have

T K P

fl(x,el,...,ep)=222e};’j. (1)

j=1k=1i=1

Figure 1 shows the irregular data sampled from a substa-
tion with 12 sets of VTs, where each VT set includes three
primary voltage phases. The horizontal axis is the length of
the measured sequential data, and the vertical axis shows the
measured primary voltage value.

Accordingly, it can be derived from (1) that this function is
fully separable, i.e., no decision variable is interacting with

! In the original TREE problems, several constraints and the third objec-
tive are also designed. Since the topic of this work is unconstrained
large-scale multiobjective optimization, the constraints and the third
objective are ignored in this work. Moreover, we have constructed the
TREE7 problem from a substation with the same topology as TREEG.
With different decision variables and sampled data, TREE7 is the same
as TREES in function formulation.

PV Value (KV)

0 0.5 1 1.5 2 22

Fig. 1 The measured primary voltage values in a substation with 12
sets of VT's (each set contains three VTs, and thus a total number of 36
data sequences are involved

any others [34]. Consequently, it leaves space for decision
variable analysis or CC-based methods to efficiently handle
the large-scale decision variables.

Once the variation of errors over time is considered, we
can obtain the second objective function

P
fr(x, Ae', ... AeP) = Z\/std((Ae’i’l, A ),
i=l1

2

where Aé’ is (e’i’2 — e’iﬁl, el e’i’T — e’i’Tfl, o e"KV2 —
EiK)] e e"K‘T — e’}(,Tfl) with std (%) denoting the standard
deviation of vector %. Unlike objective f}, the construc-
tion of f> is more complicated, involving different variable
interaction relationships. For TREEI to TREES, there is no
independent decision variable, and all the decision variables
can be grouped into three groups of equal size. As a result,
improper grouping results may lead to a degenerated perfor-
mance in CC-based methods. Regarding TREE6 and TREE7,
there are both independent and interacting decision variables,
which is challenging for CC-based and decision variable
analysis based algorithms.

The relationship between each decision variable and all
the objectives is also nontrivial. Suppose that each decision
variable can be classified as a position or a distance variable
as defined in [32,46]. All the decision variables are position
variables in TREE1 to TREES, and only half of the decision
variables are position variables in TREE6 and TREE7. TREE
problems involve a large number of decision variables, irreg-
ular PFs and PSs, and complex variable interactions, showing
the difficulty of real-world LSMOPs and pointing out some
open problems for the design of large-scale MOEAs.

@ Springer
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2.2 Environmental selection and offspring
generation

Offspring generation and environmental selection are two
main components of EAs. Several MOEAs with different
environmental selection approaches have been proposed in
recent decades. They can be broadly classified into three cate-
gories, i.e., dominance-based MOEAs, decomposition-based
MOEAs, and indicator-based MOEAs.

Dominance-based MOEAs compare candidate solutions
according to Pareto dominance (e.g., NSGA-II [12] and
PESAII[10]) or some modified dominance relationship (e.g.,
SPEAZ2[51]). Assisted by the reference/weight points/weights,
the decomposition-based MOEAs decompose an MOP into
a series of subproblems and optimize them simultane-
ously (e.g., MOEA/D [45] and NSGA-III [11]). In the
indicator-based MOEAs, some indicators are adopted to
assess the contribution of solutions to the whole popula-
tion, and the candidate solutions are selected accordingly
(e.g., IBEA [49]). Generally, existing MOEAs are effective
in environmental selection since only two to three objectives
are involved.

In addition to the environmental selection, the offspring
generation also plays a vital role in evolutionary multi-
objective optimization [22]. Generally, two representative
offspring generation strategies in conventional MOEAs and
three in large-scale MOEAs are involved in this work. The
first two offspring generation strategies are the simulated
binary crossover and polynomial mutation-based one in
NSGA-II [12] and the differential evolution based one in
MOEA/D-DE [28]. The rest three strategies are the problem
reformulation based one in LSMOF [23], the direction guided
one in DGEA [20], and the competitive swarm optimization
based one in LMOCSO [43]. Notably, the third evolution
step of generalized differential evolution (GDE3) [27] also
used the differential evolution operator, and a particle swarm
optimization based strategy is used in SMPSO [33]. Due to
the similarity and efficiency considerations of offspring gen-
eration strategies, we will not introduce others.

2.3 Adaptive operator selection

AOS is a recent paradigm to tackle the operator selection
problem of EAs in an adaptive manner or online fashion.
AOS aims to select a suitable operator from the given candi-
date operators set to use during the search process. Usually,
the selection is conducted based on the recent performance
or some measure of the quality of candidate operators. AOS
mainly involves two components: (1) credit assignment,
which defines how to assign credit or reward to an opera-
tor based on the impact brought by its recent application on
the current search process; and (2) operator selection, which
selects the operator to be applied next based on the previ-
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ously collected rewards. These two components used in this
work are described in the following.

2.3.1 Credit assignment

The goal of credit assignment is to provide a reward to
an operator after it has been applied, which is based on
its performance regarding the progress of the search. Most
credit assignment methods use fitness improvement as the
reward [15,16]. Since we apply AOS to an LSMOEA, the
fitness improvement cannot be used directly as a reward in
credit assignments. We propose to adopt the hypervolume
(HV) indicator [50], which is widely used to measure the
performance of MOEAsS, for measuring the impact of oper-
ator application, and the improvement of HV is taken as the
reward in credit assignment.

At the beginning of generation or iteration g, the HV
value of the population is calculated with respect to the ref-
erence point and denoted as HV(®). Here, the ideal point
of the initial population forms the reference point for cal-
culating the HV value. Then, the evolutionary operations
are performed to evolve the population, and the HV value
of the updated population is calculated as HV©&+D  After-
wards, the reward of evolutionary operator application at
generation g is measured by the HV improvement R®) =
max ((HV(g‘H) —HV®), 0), and then R® is taken as the
reward for the operator used in generation g.

2.3.2 Operator selection

Based on the rewards or credit values received from the credit
assignment, the operator selection scheme maintains an up-
to-date empirical quality estimate for each candidate operator
to update candidate operators’ application rates. The most
promising and commonly used operator selection schemes
are the probability matching (PM) [17], the adaptive pursuit
(AP) [39], and the upper confidence bound (UCB) multi-
armed bandit algorithm [2,18]. We intend to adopt the AP
method for operator selection due to its superior performance
over the PM [40], and the PM and UCB algorithms will be
tested and compared with AP. In what follows, these three
algorithms are briefly described.

The PM scheme can be mathematically formalized as
follows. Suppose we have a set of K candidate opera-
tors A = {ay, ..., ax}, PM maintains a probability vector
PO =[P® . PEIO0<P® <1and} K, P® =1)
and a quality vector Q&) = [Qig), ceey Q(Kg)] at time g (in
this work time is equivalent to iteration or generation count of
evolutionary process), where Pl.(g ) and ngg ) are the selection
probability and empirical quality estimate of the candidate
operator a; € A, respectively. Initially, the probability and

quality vectors are initialized as Pi(o) = %, QEO) = 1.0
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fori = 1,..., K. At generation g, the j-th operator a; is

selected with probability P;g ) through a proportional Selec-
tion scheme, such as roulette-wheel selection scheme, i.e.,

aj < RouletteWheelSelection(P(g ) ). 3)

After the application of operator a j, areward R;g ) is obtained
by the credit assignment. Then Q;.g) is updated to account

for the currently received reward R;g), via the exponential
recency-weight average updating mechanism, as,

1
QSng ) — Qig) +a I:Rﬁg) _ QEg)] , (4)

where o (0 < o < 1) is the learning rate. Then, the selection
probability of each candidate operators are calculated as

(e+1) Q(g+l)
g ) _K.P.. i
P = Poin + (1 = K - Poin) — ] )
Zj:] j

fori=1,..., K,

where Py is the minimal selection probability value which
avoids the selection probability decreases to zero. The com-
plete procedure of PM is presented in Algorithm 1.

Algorithm 1 Probability Matching (K, Ppi,, @)

l: fori = 1to K do
2: P« %; Q; < 1.0.
end for
while NotTerminated do
if one or more operators not applied yet then
aj < uniformly selected between the operators not applied.
else
a;j < RouletteWheelSelect(P).
9: endif
10:  R; < CreditAssignment.GetReward(a; ).
11 Qj < Qj+a[R; — Qj].
12: fori=1to K do
130 P Puin+ (1= K - Pin) 2

Zf'(:l Qj ’
14:  end for
15: end while

A O

The procedures of AP and PM algorithms are similar, but
their selection probability update methods are different. In
AP, instead of updating the probability vector P proportion-
ally to the estimated quality vector Q, a winner-takes-all
strategy is adopted to increase the selection probability of
the current best operator a;+ (Where i* = arg max; (thg +1)))
while decreasing the probabilities of the others, as follows:

1
Pl'(>kg+ ) = Pl'(*g) + ﬂ [Pmax - Pl(*g):l (6)

Pi(g+1) _ Pi(g) +8 [ Poin — Pi(g)]

fori=1,...,Kandi #i", (7

where € [0, 1] is the learning rate controlling the greed-
iness of the winner-takes-all strategy, Ppin is the minimal
selection probability value for avoiding the selection prob-
ability decreases to zero, and Ppax = 1 — (K — 1) Ppin 1S
the maximal selection probability. The complete procedure
of AP is presented in Algorithm 2.

Algorithm 2 Adaptive Pursuit (K, Ppyin, @, B)
1: Puax < 1 — (K — 1) Ppin.

2:fori =1to K do

3. P« %; Q; < 1.0.

4: end for

5: while NotTerminated do

6: if one or more operators not applied yet then

7 aj < uniformly selected between the operators not applied.
8: else

9: a; < RouletteWheelSelect(P).

10:  endif

11:  R; < CreditAssignment.GetReward(a; ).
12: Q; < Q; +a[R; — Q]

13:  i* < argmax;(Q;).

14: fori =1to K do

15: if i = i* then

16: Pix < Ppx + ﬂ[Pmax — Pi+].
17: else

18: Pi<_Pi+,B[Pmin_Pi]-
19: end if

20:  end for

21: end while

In UCB-based operator selection procedure, at time g each
operator g; has an empirical quality estimate ngg ) and a con-
fidence interval. Specifically, the confidence interval depends
on the number of times nfg ) that the operator has been applied

before. Then the operator to be used at time g + 1 is selected
by

21n (2;’;1 )

, 3
ngg)

aj < arg max Q§g> +C
l

where C is a scaling factor for regulating the trade-off
between exploitation and exploration. The complete proce-
dure of UCB is presented in Algorithm 3.

2.4 iLSMOA

In this study, we adopt iLSMOA as the basis to construct
the hybridized framework for large-scale multiobjective opti-
mization mainly for two reasons. First, iLSMOA is a flexible
framework that can easily involve different components in
most existing LSMOEAs. Second, the iterated mechanism in

@ Springer
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Algorithm 3 UCB (K, C)
1: fori =1to K do
2: nj < 0;Q0; < 1.0.
: end for
while NotTerminated do
if one or more operators not applied yet then
aj < uniformly selected between the operators not applied.
else

2m(XK 0
aj < arg max; <Q,- +C (n'lln/)>

9: endif
10:  R; < CreditAssignment.GetReward(a;).
11 nj <n; +1.

A

[ee]

. (nj—1)0;+R;
12: Q; « %
13: end while

iLSMOA is validated to be more effective than its counter-
part that uses a two-step strategy in large-scale multiobjective
optimization [19].

Algorithm 4 The framework iLSMOA [19].

Input: Z (original LSMOP), N (population size), r (number of refer-
ence solutions), gmax (Maximum iteration).

Output: P (final population).

1: P <« Initialization(N, Z)

2: while NotTerminated do

3:  Z' < ProblemReformulation(P, r, Z).

4: A < SingleObjectiveOptimization(Z’, gmax)-

5. P < EnvironmentalSelection(A, N).

6: P <« EvolveByMOEA(P, N, gmax)-

7: end while

The general framework of iLSMOA is given in Algo-
rithm 4, which uses the problem reformulation based single-
objective optimization and conventional MOEA iteratively.
To begin with, a population of size N is randomly gener-
ated from the original LSMOP Z, and Z is reformulated
into a low-dimension single-objective optimization prob-
lem Z'. Then the single-objective optimization followed
by environmental selection is conducted to obtain a set
of well-converged solutions P. Afterwards, P is further
evolved using conventional MOEA for diversity mainte-
nance. Finally, the above procedures are repeated iteratively
until the termination criterion is fulfilled. To be more specific,
the original iLSMOA uses the MOEA/D-DE [28] during the
evolution by MOEA to enhance the diversity of the popula-
tion.

3 The proposed AOS-LSMOEA

This study proposes the AOS-LSMOEA to solve real-world
LSMOPs, i.e., the TREE problems. Multiple specific off-
spring generation and environment selection operators are
included in AOS-LSMOEA to enhance its search ability.
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Besides, AOS is used to automatically select suitable oper-
ators in each iteration (or generation) of the search process.
The overall implementation of AOS-LSMOEA is presented
in the form of pseudo-code in Algorithm 5.

Algorithm 5 The framework of AOS-LSMOEA.

Input: N (population size), gmax (maximum iteration), PoffGen (pool
of candidate offspring generation opeartors), Pgnysel (pool of can-
didate environmental selection opeators), Ppin (minimal selection
probability), « and S (learning rates).

Output: P (final population).

1: OffGenSelector <— AdaptivePursuit(PostGen, Pmins &, B)-

2: EnvSelSelector «<— AdaptivePursuit(Pgnvsel, Pmins &, B)-

3: P <« Initialization(N).

4: while NotTerminated do

5:  OffGenOperator <— Select an operator by OffGenSelector accord-

ing to (3).

6:  EnvSelOperator <— Select an operator by EnvSelSelector accord-

ing to (3).

A < OftGenOperator(P)

P < EnvSelOperator(A, N).

P < EvolveByMOEA(P, N, gmax)-

R < Calculate the reward according to credit assignment.
Update quality vector Q of OffGenSelector and EnvSelSelector
according to (4).
12:  Update selection probability vector P of OffGenSelector and
EnvSelSelector according to (6) and (7).
13: end while

R

,_,_.
—_ o

Given a pool of candidate offspring generation operators
‘Poftcen and a pool of candidate environmental selection oper-
ators Pgnysel, tWo operator selectors (i.e., OffGenSelector
and EnvSelSelector) using AP are instantiated respectively
for selecting the offspring generation and environmental
selection operators. After initializing the population P of size
N, the algorithm enters the main loop. In each generation or
iteration, the two selectors first select an offspring generation
operator and an environmental selection operator for gener-
ating new offspring for updating the population. Next, the
reward for the selected operators is calculated according to
the credit assignment scheme described in 2.3.1. Then the
quality vector of the two selectors is updated based on the
received reward (i.e., the improvement of HV) according to
the quality updating rules of the AP method described in (4).
The probability vector of the two selectors is also updated fol-
lowing (6) and (7). The above-described process is iterated
until the termination criterion is fulfilled. The whole process
of AOS-LSMOEA is illustrated in Fig. 2.

In this work, the offspring generation strategies used in
LSMOF [23], LMOCSO [43], NSGA-II [12], MOEA/D-
DE [28], and direction guided offspring generation in
DGEA [20] are included as offspring generation opera-
tors used in AOS-LSMOEA, i.e., Pofigen = {LSMOF,
LMOCSO, NSGA-II, MOEA/D-DE, DGEA}. The environ-
mental selection strategies in NSGA-II [12], IBEA [49], and
SPEA2 [51] are taken as the possible environment selection
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Fig.2 Illustration of
AOS-LSMOEA using AP
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operators as well as without using any selection (WithoutSel),
i.e., Penvsel = {WithoutSel, NSGA-II, IBEA, SPEA2}. It is
worth noting that LSMOF, LMOCSO, and DGEA are repre-
sentative LSMOEAs, while NSGA-II and MOEA/D-DE are
popular MOEAs. The hybridization of these five offspring
generation strategies is expected to generate offspring solu-
tions with both good convergence and diversity. Moreover,
the environmental selection strategies in NSGA-II, IBEA,
and SPEA?2 are taken as the possible environment selection
strategies and operations without using any selection, aiming
to maintain diverse candidate solutions.

4 Experimental studies

To validate the performance of the proposed AOS-LSMOEA,
experimental studies on a set of seven TREE problems are
performed. Since this study mainly focuses on unconstrained
multiobjective optimization, the constraint functions in those
TREE problems are ignored. In this section, the settings of
experiments are first described, and then the experimental
results are presented and discussed.

4.1 Experimental setting

To examine the performance of the proposed AOS-LSMOEA,
we conducted a series of comparative experiments. First,
the LSMOEA using different operator selection approaches
are compared, including AOS-LSMOEA using PM, AP,
UCB, uniformly random operator selection strategy, and two

mixed strategies. The abbreviations of the investigated AOS-
LSMOEAs with operator selection are listed in Table 1.

Second, several powerful and popular MOEAs, including
iLSMOA, LMOCSO, DGEA, NSAG-II, and MOEA/D-DE,
are compared with the proposed AOS-LSMOEA. Further-
more, AOS-LSMOEA is compared with fifteen hybrid algo-
rithms using different combinations of offspring generation
and environmental selection operators. The acronym of the
used offspring generation and environmental selection oper-
ators are listed in Table 2. The abbreviated name of a hybrid
algorithm is denoted as HA(OGi ,ES j), which combines off-
spring generation operator OGi and environmental selection
operator ESj.

Each algorithm is run 25 times independently on each
test problems. The population size is set as N = 100 and
the maximal number of fitness function evaluation is set as
Max FES = 10x D in all the runs, where D is the dimension
of the problem. The parameter values recommended in [39]
are used in AP method, i.e., Ppin = 0.05, « = 0.8, and
B = 0.8. For PM, the two parameters are set the same as that
in AP, i.e, Pyin = 0.05 and @ = 0.8. The scaling factor of
UCBissetas C = 1.0.

Since we do not know the PFs of real-world test problems,
the inverted generational distance (IGD) [8] metric cannot be
computed. Thus we use the hypervolume (HV) [50] indicator
to evaluate the algorithm’s performance. The ideal point of
the initial population is used as the reference point, which
is used in HV calculation. In comparisons, for each algo-
rithm, the average HV (HV,,,) and standard deviation of
HV (HVj,4) over 25 independent runs on each test problem
are presented. Additionally, the box plot of the HV from each
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Table 1 The list of compared

AOS-LSMOEAs with different Acronym

Description

operator selection strategies AOS-LSMOEA(AP)

AOS-LSMOEA(PM)
AOS-LSMOEA(UCB)
UR-LSMOEA
AOS-LSMOEA(UR,AP)

AOS-LSMOEA(AP,UR)

AOS-LSMOEA using AP

AOS-LSMOEA using PM

AOS-LSMOEA using UCB

LSMOEA using uniform randomly (UR) operator selection

AOS-LSMOEA where offspring generation operator is
uniform randomly selected, and environmental selection
operator is selected by AP

AOS-LSMOEA where offspring generation operator is
selected by AP, and environmental selection operator is
uniform randomly selected

Table2 The list of used

offspring generation and Acronym

Offspring generation operator

environmental selection 0G1

operators
0G2

0G3
0G4
0G5
ESO
ES1
ES2
ES3

Offspring generation strategy used in LSMOF
Offspring generation strategy used in LMOCSO
Offspring generation strategy used in NSGA-II
Offspring generation strategy used in MOEA/D-DE
Offspring generation strategy used in DGEA
Without using any environmental selection
Environmental selection strategy used in NSGA-II
Environmental selection strategy used in IBEA

Environmental selection strategy used in SPEA2

Table 3 To investigate the contribution of AOS on offspring gen-
eration and environmental selection operators, as well as to further
demonstrate the superiority of AOS over uniform random selection
strategy, we compared AP with two mixed selection strategies. The
results achieved by AOS-LSMOEA(AP), AOS-LSMOEA(UR,AP), and

AOS-LSMOEA(AP,UR) Comparison of AOS-LSMOEAs using three
different AOS methods (AP, PM, and UCB) and one uniformly random
operator selection strategy. The HV ;¢ and HV ;4 over 25 independent
runs achieved by each algorithm on each problem

Problem D AOS-LSMOEA(AP) AOS-LSMOEA(PM) AOS-LSMOEA(UCB) UR-LSMOEA
TREE1 3000 0.8175 (0.0097) 0.8127 (0.0136) 0.8100 (0.0114) 0.8051 (0.0118)
TREE2 3000 0.8451 (0.0064) 0.8455 (0.0053) 0.8360 (0.0094) 0.8359 (0.0107)
TREE3 6000 0.8787 (0.0115) 0.8789 (0.0079) 0.8698 (0.0117) 0.8697 (0.0104)
TREE4 6000 0.8815 (0.1372) 0.8997 (0.0768) 0.8547 (0.1118) 0.8514 (0.1384)
TREES 6000 0.9162 (0.0133) 0.9179 (0.0123) 0.8975 (0.0269) 0.9072 (0.0159)
TREE6 30,000 0.9165 (0.0051) 0.9131 (0.0096) 0.9079 (0.0092) 0.9098 (0.0080)
TREE7 30,000 0.8213 (0.0136) 0.8101 (0.0664) 0.7357 (0.1479) 0.7468 (0.1273)
+/ -/~ 0/0/7 6/0/1 5/0/2

algorithm on each problem is plotted. The Wilcoxon rank-
sum test [14] is used to compare the results obtained by the
AOS-LSMOEA(AP) and other compared algorithms with a
significance level of 0.05. The “+4”, “—"" and “~X” signs sum-
marize the Wilcoxon rank-sum test results, i.e., the number of
problems on which the performance of AOS-LSMOEA(AP)
is significantly better than, worse than, or almost similar to
that of the corresponding algorithm, respectively. All the
investigated algorithms are implemented in PlatEMO [41]
(version 2.9) with MATLAB 2019b. The experiments were

@ Springer

run on the same computing platform, i.e., Dell Precision
T3630 with Intel Core 17-8700 processor and 32 GB RAM.

4.2 Experimental results
4.2.1 Different operator selection strategies
Three variants of AOS-LSMOEA are compared to deter-

mine which AOS method among PM, AP, and UCB is
the best for solving TREE problems. Additionally, AOS-
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Table4 Comparison of AOS-LSMOEA(AP), AOS-LSMOEA(UR,AP) and AOS-LSMOEA(AP,UR). The HV,, and HV ;4 over 25 independent

runs achieved by each algorithm on each problem

Problem D AOS-LSMOEA(AP) AOS-LSMOEA(UR,AP) AOS-LSMOEA(AP,UR)
TREE1 3000 0.8175 (0.0097) 0.8053 (0.0114) 0.8114 (0.0094)

TREE2 3000 0.8451 (0.0064) 0.8426 (0.0081) 0.8432 (0.0074)

TREE3 6000 0.8787 (0.0115) 0.8788 (0.0088) 0.8780 (0.0148)

TREE4 6000 0.8815 (0.1372) 0.8968 (0.1409) 0.9062 (0.0638)

TREES 6000 0.9162 (0.0133) 0.9129 (0.0127) 0.9137 (0.0145)

TREE6 30,000 0.9165 (0.0051) 0.9112 (0.0071) 0.9130 (0.0124)

TREE7 30,000 0.8213 (0.0136) 0.8050 (0.0809) 0.7587 (0.1387)
VS 0/0/7 0/0/7

Table5 Comparison of LSMOEA-AP and five popular MOEAs, including iLSMOA, LMOCSO, DGEA, NSGA-II, and MOEA/D-DE. The HV ¢

and HV,,4 over 25 independent runs achieved by each algorithm on each problem

Problem AOS-LSMOEA(AP)  iLSMOA LMOCSO DGEA NSGA-II MOEA/D-DE
TREEL 0.8175 (0.0097) 0.6035 (0.0333)  0.6756 (0.0223)  0.7679 (0.0887)  0.5190 (0.0061)  0.7404 (0.0075)
TREE2 0.8451 (0.0064) 0.6721 (0.0134)  0.7226 (0.0160)  0.8355 (0.0131)  0.6092 (0.0048)  0.7697 (0.0050)
TREE3 0.8787 (0.0115) 0.5282 (0.0264)  0.5642 (0.0359)  0.7978 (0.0842)  0.3425 (0.0067)  0.7180 (0.0116)
TREE4 0.8815 (0.1372) 0.0874 (0.0008)  0.0000 (0.0000)  0.4152 (0.3612)  0.0000 (0.0000)  0.0636 (0.0458)
TREES 0.9162 (0.0133) 0.4497 (0.0358)  0.5097 (0.0427)  0.6649 (0.1821)  0.1680 (0.0075)  0.6727 (0.0136)
TREE6 0.9165 (0.0051) 0.1870 (0.0477)  0.2889 (0.0571)  0.8755(0.0776)  0.0000 (0.0000)  0.5773 (0.0240)
TREE7 0.8213 (0.0136) 0.5732(0.0214)  0.6120(0.0306)  0.7873 (0.0199)  0.3882 (0.0018)  0.7401 (0.0065)
+/ -/~ 7/0/0 711010 5/0/2 7/0/0 7/0/0

LSMOEA is compared with its counterpart using a uni-
formly random operator selection strategy (denoted as UR-
LSMOEA) and the same candidate operators to assess the
effectiveness of AOS used in our algorithm. The HVy,
and HVy;; of AOS-LSMOEA(AP), AOS-LSMOEA(PM),
AOS-LSMOEA(UCB), and UR-LSMOEA are listed in
Table 3. The box plots of HV values are displayed in
Fig. 3.

According to the statistical tests, AOS-LSMOEA(AP)
performs significantly better than AOS-LSMOEA(UCB)
on six out of seven TREE problems. These two algo-
rithms perform similarly on the remaining problem. AOS-
LSMOEA(AP) also performs significantly better than UR-
LSMOEA on five out of seven TREE problems, and the
compared algorithms get similar performance on the remain-
ing two problems. Besides, AOS-LSMOEA(AP) has a sim-
ilar performance to AOS-LSMOEA(PM) on all the seven
problems. When looking at the box plots of HV values
in Fig. 3, it can be observed that AOS-LSMOEA(AP)
has achieved a better median HV value than the other
three algorithms on almost all the test problems except for
TREE2. Thus, it can be concluded that the AP method
is the best one among PM, AP, and UCB for solving the
TREE problem. To investigate the contribution of AOS
on offspring generation and environmental selection oper-
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ators, as well as to further demonstrate the superiority of
AOS over uniform random selection strategy, we com-
pared AP with two mixed selection strategies. The results
achieved by AOS-LSMOEA(AP), AOS-LSMOEA(UR,AP),
and AOS-LSMOEA(AP,UR) are listed in Table 4. Though
the three compared algorithms have performed similarly,
AOS-LSMOEA(AP) has achieved better HV,; than AOS-
LSMOEA(UR,AP) and AOS-LSMOEA(AP,UR), except for
TREEA4. The result also indicates the advantages of using AP
for solving TREE problems.

4.2.2 AOS-LSMOEA(AP) versus some popular MOEAs

Several powerful and popular MOEAs, including iLSMOA,
LMOCSO, DGEA, NSAG-II, MOEA/D-DE, are compared
with the proposed AOS-LSMOEA(AP). The comparison
results are given in Table 5. In this table, the AOS-
LSMOEA(AP) obtains the maximal HV,,, on all the
seven TREE problems. According to the statistical test
results, AOS-LSMOEA(AP) performs significantly better
than iLSMOA, LMOCSO, NSGA-II, and MOEA/D-DE on
all seven problems. AOS-LSMOEA(AP) performs better
than DGEA on five problems, and it achieves a similar
performance to DGEA on the other two problems. Exper-
imental results also show that UR-LSMOEA achieves better
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Table7 The average run-time (RTg,,) over 25 independent runs achieved by each algorithm on each problem (Unit: Second)

Problem D iLSMOA LMOCSO DGEA NSGA-II MOEA/D-DE UR-LSMOEA AOS-LSMOEA(AP)
TREEI 3000 17.04 37.31 35.40 31.82 17.29 24.36 24.57

TREE2 3000 26.35 78.06 69.36 59.75 28.85 35.63 33.73

TREE3 6000 60.23 108.57 147.42 122.80 69.69 70.89 73.27

TREE4 6000 60.85 111.71 147.88 121.52 68.37 70.11 70.58

TREES 6000 68.93 130.12 168.80 137.24 74.29 79.25 79.27

TREE6 30,000 1340.32 2759.12 4190.29 3430.34 1595.48 1639.41 1411.82

TREE7 30,000 1296.68 2694.91 3943.40 3412.44 1584.93 1633.94 1430.01

Sum of RT¢ 2870.39 5919.80 8702.55 7315.91 3438.90 3553.59 3123.24

results than iLSMOA, LMOCSO, DGEA, NSGA-II, and
MOEA/D-DE, and the proposed AOS-LSMOEA(AP) per-
forms better than UR-LSMOEA. Generally, NSGA-II and
iLSMOA have performed poorly, which may be attributed
to their disadvantage in diversity maintenance. By contrast,
MOEA/D-DE paid more attention to diversity maintenance,
leading to slight degeneration in convergence enhancement.
DGEA and LMOCSO are good at balancing convergence
and diversity, but there is no adaptive strategy to adjust the
balance along with the evolution, leading to their failure on
TREE4. With the adaptive strategy and involvement of both
convergence enhancement and diversity maintenance oper-
ations, AOS-LSMOEA has achieved the most competitive
results on almost all the test instances, indicating the effec-
tiveness of the adaptive operator selection method.

4.2.3 AOS-LSMOEA(AP) versus different variants

In the following, AOS-LSMOEA(AP) is compared with
fifteen hybrid algorithms using different combinations of
offspring generation and environmental selection opera-
tors to validate AOS’s effectiveness comprehensively. The
comparison results are listed in Table 6. According to the
statistical tests, AOS-LSMOEA(AP) statistically performs
better than 12 out of 15 different combinations on seven
TREE problems. AOS-LSMOEA(AP) has a similar perfor-
mance with HV(OG1,ES2), but it performs slightly worse
than HV(OG1,ES1) and HV(OG1,ES3). It can be stated that
AOS-LSMOEA(AP) has competitive performance with the
best combination of the used offspring generation and envi-
ronmental selection operators.

The results show that the hybrid algorithm HV(OG1,ES1)
is the best combination of offspring generation and environ-
mental selection operators among all the possible combina-
tions. Though the best combination HV(OG1,ES1) slightly
performs better than AOS-LSMOEA(AP), it has bad result
on TREE7. By contrast, AOS-LSMOEA(AP) consistently
achieves good results on all the test problems. Thus, AOS-
LSMOEA(AP) performance is more robust than the human-
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made hybrid algorithm that combines different offspring
generation and environmental selection strategies. Moreover,
to achieve a high-performance human-made hybrid algo-
rithm, one usually needs to test many combinations to select
the best one, which generally requires high computational
costs.

4.2.4 Run-time analysis

Furthermore, the average run-time (RT,,g) and standard
deviation of run-time (RT;;) over 25 independent runs
achieved by each problem are recorded and listed in Table
7. AOS-LSMOEA(AP) does not increase computing time
significantly. On each problem, the sum of RT,, of AOS-
LSMOEA(AP) is only longer than that of iLSMOA and
MOEA/D-DE, and it is shorter than the other five algo-
rithms. Thus, the additional computational cost brought by
AP in AOS-LSMOEA(AP) is negligible. It can be stated that
the AOS-LSMOEA(AP) significantly improves the perfor-
mance of iLSMOA on TREE problems. At the same time,
the computational cost is only increased slightly. Therefore,
the proposed AOS-LSMOEA(AP) is an effective and effi-
cient algorithm for solving TREE problems.

Moreover, the average frequency of the offspring genera-
tion operators and environmental selection operators selected
by AOS and applied in the search process are shown in
Fig. 4. According to the histogram, it can be found that
the “LSMOF” (offspring generation operator from LSMOF
algorithm) usually performs well on the TREE problems, and
it is the most frequently used offspring generation operator
on all the test TREE problems. For the environmental selec-
tion process, operators from NSGA-II, IBEA, and SPEA2
are most frequently used in TREEI to TREEG6, whereas
NSGA-II has minimal application frequency on TREE7. This
result indicates that the environmental selection operator in
NSGA-II is not suitable for the TREE7 problem, which is
also validated by the poor results obtained by HA (combi-
nation of LSMOF and NSGA-II) on TREE7. Thanks to AP
used to select the suitable operator, other qualified operators
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Fig.4 Histogram of operator selection on TREE problems from AOS-
LSMOEA(AP)

rather than NSGA-II are selected in AOS on the environmen-
tal selection operator. This result also shows the superiority
of combining AOS and existing LSMOEASs in solving TREE
problems.

5 Conclusion

This paper proposed an adaptive LSMOEA framework with
adaptive operator selection (AOS), termed AOS-LSMOEA,
to solve real-world LSMOPs, i.e., the TREE problems. In the
proposed AOS-LSMOEA, multiple offspring generation and
environmental selection operators are included, and the AOS
method automatically selects suitable operators to use in each
iteration. Experimental studies show that AOS-LSMOEA
performs better than iLSMOA, LMOCSO, DGEA, NSAG-II,
MOEA/D-DE and UR-LSMOEA. The superiority of AOS-
LSMOEA can be attributed to two aspects. On the one
hand, by including multiple operators in the algorithm, its
search ability can be enhanced since different operators
have different strengths during the search. On the other
hand, adopting AOS can identify and select proper oper-
ators from available operators. Besides, the histograms of
operator selection on different TREE problems reveal that
the offspring generation strategy of LSMOF is mostly used.
While, for the environmental selection operator, the trend
of application frequency is changed on TREE7. Fortunately,
AOS has identified and appropriately addressed this sudden
change, and thus suitable operator can be selected. This work
also shows that it is promising to use automatic algorithm
configuration methods, such as adaptive operator selection
and automatic parameter tuning, to design new MOEAs
or LSMOEAs to solve challenging MOPs in real-world
applications.
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